
Spezielle Kapitel aus Betriebssysteme:
Secure Code - LVA 353.013
Part 3

secure: [si-'kyur]
1: free from danger
2: free from risk of loss
3: affording safety

Security Training

Security Kickoff
& Register with

SWI

Security
Design
Best

Practices

Security Arch &
Attack Surface
Review

Use Security
Development

Tools &
Security Best
Dev & Test
Practices

Create
Security

Docs
and Tools

For Product

Prepare
Security

Response
Plan

Security
Push

Pen
Testing

Final
Security
Review

Security
Servicing &
Response
Execution

Feature Lists
Quality Guidelines

Arch Docs
Schedules

Design
Specifications

Testing and Verification

Development
of New Code

Bug Fixes

Code
Signing A
Checkpoint

Express
Signoff

RTM

Product Support
Service Packs/
QFEs Security

Updates

Requirements Design Implementation Verification Release
Support

&
Servicing

Security Deployment Lifecycle
Tasks and Processes

Threat
Modeling

Functional
Specifications

Traditional Microsoft Software Product Development Lifecycle TasTraditional Microsoft Software Product Development Lifecycle Tasks and Processesks and Processes

Security Training

Security Kickoff
& Register with

SWI

Security
Design
Best

Practices

Security Arch &
Attack Surface
Review

Use Security
Development

Tools &
Security Best
Dev & Test
Practices

Create
Security

Docs
and Tools

For Product

Prepare
Security

Response
Plan

Security
Push

Pen
Testing

Final
Security
Review

Security
Servicing &
Response
Execution

Feature Lists
Quality Guidelines

Arch Docs
Schedules

Design
Specifications

Testing and Verification

Development
of New Code

Bug Fixes

Code
Signing A
Checkpoint

Express
Signoff

RTM

Product Support
Service Packs/
QFEs Security

Updates

Requirements Design Implementation Verification Release
Support

&
Servicing

Security and Design
Establish and Follow Best Design
Practices

Threat
Modeling

Functional
Specifications

Traditional Microsoft Software Product Development Lifecycle TasTraditional Microsoft Software Product Development Lifecycle Tasks and Processesks and Processes

Security vs. Usability

All features must be usable
Especially challenging for security

If the feature is not user-friendly it will not
be used

If it is not used, why have it?

Poor usability increases chances of
mistakes by users

Example – worms that rely on user error

Makes it easier to attack level 8 of the OSI
model

Usability

The user will not read documentation

Talk to users to determine their security
requirements

Realize that user's aren't always right

Users are lazy

Know Vulnerabilities

Past vulnerabilities

Competitor's vulnerabilities

Industry security issues

A component which is “Part of multiple
products, with multiple version floating around.”
– SLipner

Eg; redistributable components (MSXML, MSDE
etc.)

Problems with giblets
A single bug spreads has a domino effect

Multiple products affected
Testing explodes

Servicing model
Team may not exist to service the code
Not a clear ship vehicle

Beware of ‘Giblets’

Understand Understand youryour giblets!giblets!

Default install is secure

Pay close attention to access
control

If creating new user accounts,
they are low privilege and have
strong passwords

Privacy implications understood
and documented

“End-of-life” plans in place for
features that will eventually be
deprecated

Know unsafe functions and
coding patterns

Education in place for team

Validate all input data

Watch for canonical representation issues

Use Cryptography correctly

...

Sample Source == production code

Be careful with error messages

Sample: Bad Error Message

Documentation reflects good
security practice

Why is it Important?

Customers can be mislead into making
insecure decisions.

The ramifications of a bad documentation
security bug (DSB) can be just as bad as
a security issue in the code.

We don’t want to lose customer trust!

Where can DSB occur?

It can occur in various places
UI of your application (Dialog Box)

Manual / Help File / Read me / KB Article

Samples Codes

Video / Audio Recordings

Etc.

Look in places where there are text but
don’t limit yourself to just text.

DSB can occur in text / audio / video!!

Positioning of features

Known feature limitations

Unsafe Recommendations

Are you giving secure advice?
Don’t throw security out the window!!

DSB: Unsafe Recommendation

DSB: Unsafe Recommendations

Original Text

DSB: Unsafe Recommendations

Corrected Text

Promoting the use of SA account is promoting security flaw…

DSB: Unsafe Recommendation

Locking down features

Lack of Information

Can the user make informed decision based on
your text or dialog?

Lack of Information

Lack of Information

Outlook Example: Opening attachments

Lack of Information

Trigger (Weak) Advice \ Instruction

Consequences??Issue

Dealing with passwords

Are you using passwords
correctly in your feature?

Dealing with passwords

Dealing with passwords

User Impression
•Security Tab (It’s Secure!)
•Prevent unauthorized modification

Actuality
•A very very weak protection
•A simple flag in the document
dictates if modification is allowed
•A quick investigation via Diff can
bypass this protection.

Question
•How useful was the password?
•How will the user perceive this feature?

Information Disclosure

Sample Codes

Do you give bad examples?
Is your insecure code being cloned somewhere?

DSB: Sample Codes

Sample codes are learned from.

Sample codes are copied from.

A flaw in a sample code can propagate to
real products.

Sample Code

Internet Information Server Resource Kit
(Microsoft Press)

<html>

<head><title>Server Selection Page</title></head>

<body>

<a href=“http://www.example1.com/*www.example1.com/
<%=Request.QueryString() %>”>Try this Site www.example1.com

<a href=“http://www.example1.com/*www.example2.com/
<%=Request.QueryString() %>”>Try this Site www.example2.com

</body>

</html>

Cross Site Scripting Bug

Cross Site Scripting Bug

Sample Code

Internet Information Server Resource Kit
(Microsoft Press)

<%

Set rs = Server.CreateObject(“ADODB.Recordset”)

Rs.Open “SELECT * FROM Authors”, “DSN=Pubs:UID=sa;PWD=“

‘--- Loop through the recordset with MoveNext

Do Until rs.EOF

‘--- Access record fields here

rs.MoveNext

Loop

Rs.Close

%>

You probably don’t need sa to query (read)
SA has no password…

How do Test?

Conclusion

Documentation security bug can have
dramatic impact on security.

Security is only good as it’s weakest link.

Don’t let your documentation be the cause
of insecurity!

A Designer's Security Checklist

Education in place for team
Someone on team signed up to monitor BugTraq
(http://www.securityfocus.com/archive/1) and
NTBugtraq (http://www.securitytrap.org/ntbugtraq.html)
Competitor’s vulnerabilities analyzed to determine if the
issues exist in this product
Past vulnerabilities in previous versions of product
analyzed for root cause
Application attack surface is as small as possible
If creating new user accounts, they are low privilege and
have strong passwords
Safe-for-scripting ActiveX controls thoroughly reviewed
Sample code reviewed for security issues. You must
treat sample code as production code

A Designer's Security Checklist

Default install is secure
Threat models complete for design phase
Product has layered defenses
Security failures logged for later analysis
Privacy implications understood and documented
Plans in place to migrate appropriate code to
managed code
“End-of-life” plans in place for features that will
eventually be deprecated
Security response process in place
Documentation reflects good security practice

Implementation Phase

Security Training

Security Kickoff
& Register with

SWI

Security
Design
Best

Practices

Security Arch &
Attack Surface
Review

Use Security
Development

Tools &
Security Best
Dev & Test
Practices

Create
Security

Docs
and Tools

For Product

Prepare
Security

Response
Plan

Security
Push

Pen
Testing

Final
Security
Review

Security
Servicing &
Response
ExecutionThreat

Modeling

Security and Development
Why Security during Development?

Even if the design is solid, if the
implementation is weak then the system
fails

Developers introduce the majority of
security bugs

Buffer Overruns, Integer Overflows, SQL
injection, etc.

Security and Development
Focus Areas in the Development Phase

Secure coding guidelines, standards and
principles

Code and Peer Reviews
Incorporate security in your reviews

Use threat models to direct and prioritize

Use external assistance where appropriate

Security Tools
The best tool is between your ears!

Trained developers are good at finding specific
vulnerabilities

They are not good at finding all instances

Use and build tools to scale the problem

How To Write Unmaintainable Code

http://mindprod.com/jglass/unmain.html

Development Best Practices

Document all tools used

Create a coding checklist that describes
all the minimal requirements for any code
checked in

Establish and document how the team will
enforce these practices.

Common Language Flaws

VB.NET

PHP

Perl

†C#

†Java

C/C++

Lousy
Crypto

SQL
Injection

XSSInt
Overflow

Buffer
Overrun

†† -- Not as severe as C/C++Not as severe as C/C++

Fear user input
Must validate all input from any external, untrusted source

best frame of mind is to assume it’s purposely malformed

failure to do this is the lead cause of security vulnerabilities

Tests you can perform
is the input the right size?

does the input conform to a legal format?

Application must carefully define what is legal input
don’t try to test for exceptional cases – you’ll always miss one

Do your own “taint checking”
take a lesson from Perl

Buffer overflows
Bug: failure to detect that input is bigger
than buffer can hold

Result: attacker sends arbitrary
machine code and you run it

This is the number one security problem in
C and C++ code

void main() {
foo();

}

void foo() {
char buf[1024];
readUserName(buf);
logUserName(buf);

}

Smashing the heap
C++ apps have heaps that contain data and
function pointers

an object has state, but it also has a “vptr”

What if a buffer in the heap overflows?
could overwrite vptrs

First function in vtable usually is virtual destructor
Attacker reroutes destructor to point to other code

Bottom line: buffer overflows can lead to nasty
security compromises, wherever they occur

Finding buffer overflows in
source code

Search for commonly misused functions
strcpy, strcat, memcpy, sprintf

must check size of destination buffer manually

strncpy, strncat
size of buffer specified in characters, not bytes!

see list of functions in Appendix A of Writing
Secure Code

Consider banning some functions from
use!

Compiler Switches Compiler Switches

demodemo

Format string vulnerabilities

Bug: allowing the attacker to control a
format string

Result: attacker sends arbitrary machine
code and you run it

Spotting the bug:

Never allow the user to specify any part of
a format string

printf(userSuppliedString); // BUG BUG
printf(“%s”, userSuppliedString); // correct

How a format string attack works

Format string causes printf to read values
up the stack

if no arguments passed to look at, printf is
looking at stuff it shouldn’t be looking at (local
variables, return addresses, etc.)

// correct usage of printf
int i = 1, j = 2, k = 3;
char* s = "Hello world";
printf("%d%d%d%s", i, j, k, s);

// bad usage of printf
printf("%d%d%d%s");

this will likely crash the app
when printf tries to dereference
the fourth element on the stack,
treating it as a string pointer

How a format string attack works

Format string can also cause printf to
write to the stack

via the somewhat esoteric (but fully
supported) %n specifier

// correct usage of printf
int i = 1, j = 2, k = 3;
int bytesOutputSoFar;
printf("%d%d%d%n", i, j, k, &bytesOutputSoFar);

// incredibly bad usage of printf
printf("%d%d%d%n");

this causes printf to walk up the stack
and overwrite a four byte value with
the number of bytes it’s output so far

Avoiding format string
vulnerabilities

Never allow user input to creep into format strings
Keep the attacker in the data channel

Check all usages of the following functions
printf, wprintf, vprintf, _tprintf, etc.

sprintf, swprintf, vsprintf, _tsprintf, etc.

fprintf, fwprintf, vfprintf, _tfprintf, etc.

Check logging and tracing functions that take
format strings

where most vulnerabilities are being found in Unix
today

Add to Checklist
Code compiled with –GS (if using Visual
C++ .NET)
Debug builds compiled with –RTC1 (if using
Visual C++ .NET)
Check all untrusted input is verified prior to
being used or stored
All buffer management functions are safe
from buffer overruns
Review Strsafe.h for potential use in your
code
Review the latest update of dangerous or
outlawed functions

Canonicalization errors
Bug: failure to canonicalize resource
names

Result: various security policy violations

A resource (files for example) can have
many names:

C:\foo\bar\somelongfilename.txt
C:\foo\bar\somelongfilename.txt.
C:\foo\bar\somelo~1.txt
..\foo\bar\somelo~1.txt.
Z:\somelongfilename.txt::$DATA
\\server\share\bar\somelong%66ilename.txt

Tips for avoiding canonicalization
errors

Avoid making decisions based on user provided file
names (or names of other resources)

For server applications, don’t let clients tell you
where to find a file

don’t allow clients to specify full paths – you should
always provide the base location yourself

don’t rely on your PATH environment variable to find files

Don’t let multi-byte encodings surprise you
there are often several ways to encode a single character

Canonicalize user provided names carefully
see CleanCanon.cpp from Writing Secure Code

SQL injection attacks

Bug: concatenating SQL commands
with raw user input

What’s wrong with the following C#
code?

imagine this was the code behind an
ASP.NET login form

string sql = "select * from users where name='" +
txtName.Value +
"' and password = '" +
txtPwd.Value +
"'";

cmd.CommandText = sql;
IDataReader reader = cmd.ExecuteQuery();

SQL injection attacks, cont.
Here’s the input you’d expect to get from a
legitimate user

Name: Bob

Password: nU3!gx7

Resulting SQL:

Here’s what an attacker might send instead
Name: Bob'--

Password: hack

Resulting SQL:

select * from users where name='Bob' and pwd='nU3!gx7'

select * from users where name='Bob'--' and pwd='hack'

Avoid SQL injection attacks

Use parameterized queries or stored procs
stop building SQL statements using string
concatenation

// a parameterized query
// keeps the attacker out of the control channel
string sql = "select * from users where name=@n and pwd=@p";
cmd.CommandText = sql;
cmd.Parameters.Add(new SqlParameter("@n", name.Text));
cmd.Parameters.Add(new SqlParameter("@p", password.Text));
IDataReader reader = cmd.ExecuteQuery();

SQL Statistical Attacks

SQL aggregate functions

AVG(col) - the average of the values in a column
COUNT(col) - the number of values in a column
MAX(col) - the maximum value in a column
MIN(col) - the minimum value in a column
SUM(col) - the sum of data in the column

Aggregate Query

SELECT AVG(income)

FROM customers

WHERE city = "reno";

SELECT AVG(income)

FROM customers

WHERE city = "reno"

AND state = "nv“

AND age = 72;

Sample

SELECT COUNT(*)

FROM customers

WHERE city = "reno"

AND state = "nv“

AND age = 72;

Sample

SELECT AVG(income)

FROM customers

WHERE NOT(city = "reno"

AND state = "nv“

AND age = 72);

Sample

SELECT COUNT(*)

FROM customers

WHERE state = “va“;

Result: 10000

Sample

SELECT AVG(income)

FROM customers

WHERE state = “va"
OR (city = "reno"

AND state = "nv“

AND age = 72);

Result: $60,001

Sample

SELECT AVG(income)

FROM customers

WHERE state = "nv“;

Result: $60,000

Sample

The sum of Virginia salaries + the target
salary = 60,001

The sum of Virginia salaries = 10,000 *
60,000 = 600,000,000

The target salary = 60,001 * 10,001 -
600,000,000 = $70,001

Never echo unfiltered input back as HTML

Known as “cross site scripting”

The basic problem
one can submit HTML that is then served to another

HTML can contain scripts

What can happen to a victim
cookies can be stolen

COM objects can instantiated and scripted with
untrusted data

user input can be intercepted

How to avoid cross site scripting
all user input should be filtered, as usual

all output that may contain user data should be escaped

HttpServerUtility.HtmlEncode is your friend!

Don’t rely on client side validation

Know what client side validation is for
gives clients a better user experience

reduces load on your server from accidental bad input

Client side validation provides no real security
clients don’t have to use your form to submit requests

always validate input when it arrives at the server

think about Perl’s “taint checking” and try to apply the
same ideas to your own code

ASP.NET validation controls are a great utility
provides client with immediate feedback on errors via
Jscript

provides server protection by validating input on server
side

Beware storing secrets

Storing secret data on a machine is tricky
how do you protect it?

how do you read it?

what stops someone else from reading it as well?

Can encryption help?
where do you store the encryption key?

Avoid storing sensitive data in config files

<configuration>
<system.web>
<identity userName='Bob' password='HereIsMySecret'/>
</system.web>
</configuration>

Data protection API
DPAPI consists of two functions that simplify
secret storage

CryptProtectData, CryptUnprotectData

Supported on Windows 2000, XP, .NET Server

Protection derived from up to three sources

raw
data

protected
data

user login
credential

application
secret

user provided
password

ASP.NET and DPAPI
A patch for ASP.NET allows you to encrypt
passwords

See knowledge base article 329290

You’ll need the patch and a tool called
aspnet_setreg.exe

Uses DPAPI with the machine’s credentials
if the machine is compromised, the attacker can
decrypt these strings

but if you absolutely must specify these passwords, this
is better than using cleartext

<identity impersonate='true'
userName='registry:HKLM\...\ASPNET_SETREG,userName'
password='registry:HKLM\...\ASPNET_SETREG,password' />

Use good ACLs
What should you pass for
lpMutexAttributes?

Most sample code passes NULL

Who will have access to the mutex if you do
this?

HANDLE CreateMutex(
LPSECURITY_ATTRIBUTES lpMutexAttributes,
BOOL bInitialOwner,
LPCTSTR lpName

);

Watch for race conditions

Timing bugs can lead to compromises
Thread one loads plaintext into a buffer

Thread one begins to encrypt the buffer

Thread two begins to read the buffer before
encryption is finished

Howard suggests using separate buffers for
plaintext and ciphertext

Thread two would be reading from a ciphertext
only buffer

Race condition is still a bug, but doesn’t
compromise security

Keep attackers guessing
Security errors should lead to two distinct outputs

vague message to user, with instructions on how to
proceed

detailed error message to internal log

give user an identifier so tech support can find the detailed
message

Avoid giving away free information
one of the first stages of an attack is reconnaissance

banners or headers that give away system information
should be omitted or changed wherever possible

you must still assume an attacker knows what you’re
running

TCP/IP fingerprinting is pretty effective

see http://uptime.netcraft.com/up/graph/ for an example

Run with least privilege
Code should run with minimum possible
permissions

by doing this, you’re allowing the OS to erect walls
around you

if your code has a bug, this limits the damage it can do

if an attacker exploits a bug, this limits the damage he
can do

it’s all about giving you time to detect and react (patch
the bug)

Server code
choose your process identity wisely

factor highly privileged code into a separate process

Mobile code
make use of the CAS sandbox

Reducing Attack Surface
Many products light up like Christmas Trees

Every bell, whistle, light and gizmo is running
by default

These features can be attacked by default

We thought reducing attack surface meant
turning stuff off

Luckily, it’s actually more granular (and
palatable!) than that

Reduce attack surface early

Lesson: It’s not just about turning
stuff off!

Strong ACLsWeak ACLs
Not SYSTEM!SYSTEM
Local Subnet AccessInternet Access
User AccessAnonymous Access
TCPUDP
Closed socketOpen socket
Off by defaultExecuting by default
Lower Attack SurfaceHigher Attack Surface

Attack Surface ReductionAttack Surface Reduction
is as important as is as important as

code reviewcode review

.NET Framework Security

Secure execution environment

Managed Execution Security

.NET Framework security features
Helps writing secure applications

Fundamental Components
Type Checker

Exception Manager

Security Engine (CAS & Roles)

Complement Windows Security

A Type-Safe System

Type-safe code:
Prevents buffer overruns

Only access to authorized memory

Multiple assemblies in one process

App Domains provide:
Increased performance

Increased code security

Buffer Overrun Protection

CLR Type-verification
prevents arbitrary memory overwrites

System.String immutable
StringBuilder performance

Bound Checking
Arrays and StringBuilder

void CopyString (string src)
{

stringDest = src;
}

Arithmetic Error Trapping

Arithmetic error trapping
Use checked keyword

Project settings

byte b=0;
while (true)
{

Console.WriteLine (b);
checked
{

b++;
}

}

Code Access Security

Securing mobile code

What is mobile code?

Web Server

Client

1
Request Page

3
Return Page

4
Page needs code

5
Download code

Another one: start app via URL

Issues with mobile code

Web Server

Client

1
Request Page

3
Return Page

5
Download code

Crash

Mobile Code nowadays

Common Technologies
ActiveX Controls / Documents

Java Applets

.NET Framework Assemblies

Secure mobile code
ActiveX User decides

Java Applets Sandbox

.NET Code Access Security
Digitally Sign Code

Granular Permissions

Strong-Named Assemblies

Strong names
Digitally sign assemblies

Unique identifiers Public Key

Strong-named assemblies
Prevent tampering

Confirm identity of publisher

Allow side-by-side components

sn –k MyFullKey.snk

Isolated Storage

Virtual file system
Isolate Mobile Code

Allows quotas

File system isolation based on:
Application identity

User identity

IsolatedStorageFile isoStore =
IsolatedStorageFile.GetUserStoreForAssembly();

Evidence-Based Security

Evidence
Assessed assembly loading

Determine permissions for assembly

Evidence

Url: http://www.develop.com/asm/foo.dll
Zone: Internet

Site: www.develop.com

Hash: 624a88fd26c510ba5…
Strong Name: “foo, version=1.0.0.0,
culture=neutral,
publicKeyToken=2d537cad3c7e22c9”

foo.dll

Security Policies

Security Policy
Set up by admins

Enforced at runtime

Code Group
Evidence based

Group similar components

Permission Set
Granted
permissions

PolicyEvidence Permissions

Assembly

The four policy levels

Four sources for policy

All must agree before grant

user
ap

pd
om

ai
n

m
achine

default
unrestricted
permissions

en
te

rp
ri

se

intersection
is granted

Only local
code full
trusted

Security Check Stack Walks

Call Stack

Security System

YourAssembly

SomeAssembly

.NET Framework
Assembly

Call to ReadFile

Call to ReadFile

Grant: Execute

1. Assembly requests access

2. Request pass to
.NET Framework assembly

3. Security System
ensure required permission

4. Security system grants access

Grant: ReadFile

Grant: ReadFile

Permission Demand

Grant access

Security Check Stack Walks

Call Stack

Security System

YourAssembly

SomeAssembly

.NET Framework
Assembly

Call to ReadFile

Call to ReadFile

1. Assembly requests access

2. Request pass to
.NET Framework assembly

3. Security System
ensure required permission

4. Security system denies access

Deny: ReadFile

SecurityException

Permission Demand

Deny Access

Exception

Types of Security Checks

Imperative checks
Create Permission objects

Call Permission methods

Declarative checks
Permission attributes

Apply to methods / classes

Overriding security checks
Use Assert() method

Prevent stack walk

Permission Requests

Used by developers to state required
permissions

Implemented by attributes

Prevents an assembly from loading when
minimum permissions are not available

// I will only run if I can call unmanaged code
[assembly:SecurityPermission

(SecurityAction.RequestMinimum,
UnmanagedCode=true)]

Partial Trust Applications

Prior.NET Framework 1.1
all Web applications full trust

.NET 1.1 partial trust levels:
Full

High

Medium

Low

Minimal
<<system.websystem.web>>

<trust level=<trust level=""MediumMedium""
originUrloriginUrl==""http://http://www.foo.comwww.foo.com/*/*""/>/>

</</system.websystem.web>>

Sandboxing Privileged Code

Partial Trust Web
Application

Wrapper Assembly Secured
Resource

Sandboxed Code<trust level_”Medium”
originUri_--/>

Permissions Demanded then Asserted

AllowPartiallyTrustedCallers attribute added

Assembly installed into the global assembly cache

Resource
Access

.NET & Cryptography

Encryption and Digital Signature

Cryptography Review

Long data string short representationHashing

Hash Data
Encrypt Hash Private Key
Validate Hash Public Key

Public Key encrypt
Private Key decrypt

One Key encrypt & decrypt

Description

Digital Signing

Asymmetric Encryption

Symmetric Encryption

Cryptography Term

The .NET Framework provides
classes that implement these operations

Using Symmetric Algorithms

Choose algorithm
TripleDESCryptoServiceProvider

RijndaelManaged

Generate secret key

Use secret key to encrypt & decrypt
FileStream

MemoryStream

NetworkStream

Using Asymmetric Algorithms

Choose algorithm
RSACryptoServiceProvider

DSACryptoServiceProvider

Generate key pair

Encrypt or decrypt data

Signing & verifying Signatures

Decrypt signature using public key
Hash the data
Compare decrypted signature to hash

Hash data
Encrypt hash with private key

Steps

Verifying Signatures

Signing Data

Action

Dev Checklist - General
Code compiled with –GS (if using Visual C++ .NET)
Debug builds compiled with –RTC1 (if using Visual
C++ .NET)
Check all untrusted input is verified prior to being
used or stored
All buffer management functions are safe from buffer
overruns
Review Strsafe.h for potential use in your code
Review the latest update of dangerous or outlawed
functions
All DACLs well formed and “good”—not NULL or
Everyone (Full Control)
No hard-coded 14-character password fields (should
be at least PWLEN + 1 for NULL, PWLEN is defined
in LMCons.h, and is 256

Dev Checklist - General
No references to any internal resources (server names,
user names) in code
Security support provider calls not hard-coded to NTLM
(use Negotiate)
Temporary file names are unpredictable
Calls to CreateProcess[AsUser] do not have NULL as first
argument if you know the full path name to the .EXE
Unauthenticated connections cannot consume large
resources
Error messages do no give too much info to an attacker
Highly privileged processes are scrutinized by more than
one person—does the process require elevated privileges?
Security sensitive code is commented appropriately
No decisions made on the name of files
Check that file requests are not for devices (i.e., COM1,
PRN, etc.)

Dev Checklist - General
No shared or writable PE segments
No user data written to HKLM in the registry
No user data written to c:\program files
No resources opened for GENERIC_ALL, when
lesser permissions will suffice
Application allows binding to appropriate IP address,
rather than 0 or INADDR_ANY
Exported APIs with byte count vs. word count
documented
Impersonation function return values checked
For every impersonation, there is a revert
Service code does not create windows and is not
marked Interactive

Dev Checklist - Web/Db

No web page issues output based on unfiltered output

No string concatenation for SQL statements

No connections to SQL Server as sa

No ISAPI applications running in process with IIS 5

Force a codepage in all Web pages

No use of eval function with untrusted input in server
pages

No reliance on REFERER header

Any client-side access and validity checks are performed
on the server also

Dev Checklist – Crypto/Secret
No embedded secret data (EXE, DLL, registry,
files, etc.)
Secret data is secured appropriately
Calls to memset/ZeroMemory on private data
are not optimized away. If they are, replace
with SecureZeroMemory.
No home-developed crypto code—use
CryptoAPI or System.Security.Cryptography
Random number generation reviewed
Password generation is random
RC4 code does not re-use an encryption key
RC4-encrypted data has integrity checking
No weak crypto (128-bit vs. 40-bit)

Dev Checklist - Managed Code
FXCop has no security complaints
No sensitive data in XML or configuration files
Classes are marked final, if appropriate
Inheritance demands on classes, if appropriate
All assemblies are strong-named
Assemblies use RequireMinimum to define the must-have
grant set
Assemblies use RequestRefuse to reject specific
permissions
Assemblies use RequestOptional to outline optional
permissions that may be required
Assemblies that allow partial trust are thoroughly reviewed
and have a valid partial-trust scenario

Dev Checklist - Managed Code
Demand appropriate permissions
Assert is followed by RevertAssert to keep time of asserted
permission small
Code that denies access based on a filename is carefully
checked
Assert trumps calls to PermitOnly and Deny further up the
stack. Check code that attempts to operate otherwise.
LinkDemand thoroughly audited for correctness. Are link
demands really required?
No stack trace provided to untrusted users
SuppressUnmanagedCodeSecurityAttribute used with
caution
Managed wrappers to unmaged code checked for
correctness

Security and Testing

Security Training

Security Kickoff
& Register with

SWI

Security
Design
Best

Practices

Security Arch &
Attack Surface
Review

Use Security
Development

Tools &
Security Best
Dev & Test
Practices

Create
Security

Docs
and Tools

For Product

Prepare
Security

Response
Plan

Security
Push

Pen
Testing

Final
Security
Review

Security
Servicing &
Response
ExecutionThreat

Modeling

Security Testing

Intended
functionality

Traditional
faults

Actual
software
functionality

Unintended,
undocumented
or unknown
functionality

Missing
Defenses

Poor
Defenses Extra

‘functionality’
BOs, XSS, etc

No authn

Weak authn

BO in authn

Security and Testing
Why Security in the testing phase?

Developers think their code works (testers
know better)

Validate absence of known security
vulnerabilities

Validates threat model & mitigations

Adjunct to tools used within development

Testing Best Practices
Document all testing tools

Evaluate the need for additional tools

Develop a security testing plan
Validating the Threat Model.

“Fuzzing” all data input methods, with special
consideration of those that are part of the
attack surface for the product.

Appropriate requirements must be selected
from “Security Quality Metrics” and “Interfaces
and Attack surfaces” documents to define test
cases to validate security design and
implementation in product.

Key Focus Areas in Testing
Think and test like a hacker

Fuzz and Penetration Testing

Attack points derived from:
Threat model
Previous internal and external vulnerabilities

Test everything:
Various user rights – validate least privilege
Default install is as secure as possible
Test sample code & frameworks
Mitigations identified in threat model

Testing is complete when all KNOWN
vulnerabilities have been mitigated

What is Fuzzing?

The methodical application of malformed
data in a search for vulnerabilities

Find security & reliability issues efficiently
~20% of the bugs we find in-house are from
fuzzing

Recent example: code reviews found 6
security defects

Fuzzing same code for 2 days found 2 more!

How to Fuzz (1 of 4)

Determine all the entry points to your code
Network ports and protocols

Files and file types

Rank them by privilege level and
accessibility

Anonymous, user, admin

Remote, local

Run your app under AppVerifier

How to Fuzz (2 of 4)

For ALL file formats you consume
Build a collection of valid files

Tweak a file at random using a tool

Load the file into your application

Observe!
Crash? Memory spike?

For all network ports
Use a rogue client/server

How to Fuzz (3 of 4)

Examples of ‘tweaking’ a file
Write a random series of bytes

Flip two adjacent bytes

Look for ASCII/Unicode text and then set the
trailing NULL to non-NULL

Set size values to random numbers

Set integer to negative number

Etc…

Data Mutation Example

<?xml version="1.0" encoding=<?xml version="1.0" encoding=““utfutf--8"?>8"?>
<items><items>

<item name="<item name="FooFoo" " readonlyreadonly="true">="true">
<cost>13.50</cost><cost>13.50</cost>
<<lastpurchlastpurch>20020903</>20020903</lastpurchlastpurch>>
<<fullnamefullname>Big >Big FooFoo Thing</Thing</fullnamefullname>>

</item></item>
......

</items></items>

OnHand.xmlOnHand.xml

••Filename too longFilename too long
••Link to another fileLink to another file
••Deny access to fileDeny access to file
••Lock fileLock file

••No data No data
••Full of junkFull of junk

••Different encodingDifferent encoding
••No encodingNo encoding
••JunkJunk

••Different versionDifferent version
••No versionNo version

Data Mutation Example

<?xml version="1.0" ?><?xml version="1.0" ?>
<items><items>

<item name="<item name="FooFoo" " readonlyreadonly="true">="true">
<cost>13.50</cost><cost>13.50</cost>
<<lastpurchlastpurch>20020903</>20020903</lastpurchlastpurch>>
<<fullnamefullname>Big >Big FooFoo Thing</Thing</fullnamefullname>>

</item></item>
......

</items></items>

OnHand.xmlOnHand.xml

••Many <items>Many <items>
••Zero <items>Zero <items>

••No attributesNo attributes
••Add random attributeAdd random attribute
••Long attribute nameLong attribute name
••Attribute value too longAttribute value too long
••No attribute valueNo attribute value
••Special charactersSpecial characters

Data Mutation Example

<?xml version="1.0" ?><?xml version="1.0" ?>
<items><items>

<item name="<item name="FooFoo" " readonlyreadonly="true">="true">
<cost>13.50</cost><cost>13.50</cost>
<<lastpurchlastpurch>20020903</>20020903</lastpurchlastpurch>>
<<fullnamefullname>Big >Big FooFoo Thing</Thing</fullnamefullname>>

</item></item>
......

</items></items>

OnHand.xmlOnHand.xml
••FalseFalse
••0 or 0 or --11
••NonNon--existentexistent
••Too longToo long

••Missing <cost>Missing <cost>
••NonNon--numeric valuenumeric value
••0.000.00
••Large valueLarge value
••Large # of digitsLarge # of digits
••NegativeNegative

••Missing <Missing <lastpurchlastpurch>>
••Multiple <Multiple <lastpurchlastpurch>>
••Invalid dateInvalid date
••NonNon--date valuedate value
••Ancient dateAncient date
••In the futureIn the future
••Leap yearLeap year
••Big stringBig string
••Valid date followed by junkValid date followed by junk

••Special charactersSpecial characters
••Missing <Missing <fullnamefullname>>
••Long stringLong string
••Zero lengthZero length

How to Fuzz (4 of 4)

Network fuzzing
Build a rogue front-end to your app (client
and server)

Tweak bits at random

ClientServer

‘p
u

re
 e

vi
l’

Fuzz Testing Benefits

Easily automated

Doubles as robustness testing

Exercise more failure cases in code

Finds LOTS of bugs

More information
Blackhat paper: “The Art of File Format
Fuzzing”

http://www.blackhat.com/presentations/bh-
usa-05/bh-us-05-sutton.pdf

What is Penetration Testing?

Generally speaking, testing security from
the standpoint of a given attacker

Trying to gain access to restricted assets,
violate security assumptions, etc.

A critical weapon in the tester’s arsenal

It is not a grab bag for any test pertaining
to security

Penetration testing is a specific pursuit

Often outsourced to a specialist

Penetration Testing Benefits

Penetration testing will find bugs that
other kinds of testing won’t

This is the most like the way an attacker
will break the code, since the idea here is
to test from the attacker’s perspective

Highlights application-level security issues
to development teams and management

It’s a great opportunity to break out of
running the same old tests

Who is a “Penetration Tester”?

Good penetration tester is a good tester…
Expert in their area

Knowledgeable about the system in general

Knowledgeable as to exploit types, surfaces

Motivated

Creative

Diligent

…armed with security techniques and
methods, not some special kind of
hacker.

Targeting Penetration Tests

We should cover every feature, right?

Theoretically, but we can prioritize
High-risk features (as identified in threat
model reviews, design reviews, code
reviews)

New or significantly changed features

Features with low test coverage

Features with previous exploits

If you find a hole, mine it for others!

Call to Action
Security and Testing

Train testers on security

Use a variety of tools and methods

Specialized penetration testing

Track security issues
Feed into the Final Security Review

“Grey Hat Hacking”
Harris, Harper, Eagle, Ness and Lester

http://www.amazon.com/exec/obidos/tg/detail
/-/0072257091

Testing as non-admin

Create a non-admin account

Test!
Do you have access to stuff you should not
have access to?

What error messages do you get?

Remove yourself from the admin group on
your “day-to-day” box

A Tester’s Security Checklist
List of attack points derived from threat model
decomposition process

Comprehensive data mutation tests in place

Comprehensive SQL and XSS tests in place

Application tested with SafeDllSearchMode registry
setting set to 2 on Windows XP or tested on the
default install of Microsoft Windows .NET Server
2003

Competitor’s vulnerabilities analyzed to determine
whether the issues exist in this product

Past vulnerabilities in previous versions of product
analyzed for root cause

A Tester’s Security Checklist
If the application is not an administrative tool, test
that it runs correctly when user has no administrative
rights

If the application is an administrative tool, test that it
fails gracefully and early if the user is not an admin

Application attack surface is as small as possible

Default install is as secure as possible

Tested all Safe-for-scripting ActiveX controls
methods, properties, and events to verify that all such
interfaces are indeed safe to call from script

Sample code tested for security issues

Final Security Review

Security Training

Security Kickoff
& Register with

SWI

Security
Design
Best

Practices

Security Arch &
Attack Surface
Review

Use Security
Development

Tools &
Security Best
Dev & Test
Practices

Create
Security

Docs
and Tools

For Product

Prepare
Security

Response
Plan

Security
Push

Pen
Testing

Final
Security
Review

Security
Servicing &
Response
ExecutionThreat

Modeling

Final Security Review (FSR)
Why is the FSR important?

Ensure security is considered in the
release process

Manage remaining security issues at
release

Ensure risks are managed explicitly

Final Security Review (FSR)

“From a security viewpoint, is this software
ready?”

Software must be in a stable state with only
minimal non-security changes expected
prior to release

If the FSR finds a pattern of remaining
vulnerabilities:

Fix the vulnerabilities found AND

Revisit the earlier phases and address root
causes (e.g., improve training, enhance tools)

Final Security Review (FSR)

What is in the FSR?
Interview by a security team member assigned
to the FSR

Review of bugs that were initially identified as
security bugs, but on further analysis were
determined not to have impact on security, to
ensure that the analysis was done correctly

Analysis of any newly reported vulnerabilities
affecting similar software to check for resiliency

Additional penetration testing, possibly by
outside contractors to supplement security
team

Calls to Action
Final Security Review

Ensure security is part of release criteria

What outcomes do we have here?
Escalation of issues to management for
attention

Feedback into development process to
address ongoing issues

Delay release until issues are resolved

Security Response

Security Training

Security Kickoff
& Register with

SWI

Security
Design
Best

Practices

Security Arch &
Attack Surface
Review

Use Security
Development

Tools &
Security Best
Dev & Test
Practices

Create
Security

Docs
and Tools

For Product

Prepare
Security

Response
Plan

Security
Push

Pen
Testing

Final
Security
Review

Security
Servicing &
Response
ExecutionThreat

Modeling

Security Response
Why plan for security response?

Testing addresses KNOWN vulnerabilities

Security incidents are inevitable

Security response is part of product
support

Identify process and resources proactively

Security Response Plan

A response plan needs to cover:
The team supporting the application

Contact points for a security event

Application servicing in production

Integration with organizational response plan

Specific to application:
Technology in use

Risk profile of the application

Responding to an Event
(Based on MSRC process)

New security
incident
Information on
new/current
attacks

Event Event
IdentificationIdentification

Internal
stakeholders
External
stakeholders

CommsComms..
PlanPlan Coordinate all

comms.
Information
and guidance
to customers
Monitor
customer
issues

ReleaseRelease

Update best
practices
Update testing
tools
Update
development
and
design process

Update Dev Update Dev
Tools and Tools and
PracticesPractices

Several levels of
testing:

Setup and Build
Verification
Depth
Integration and
Breadth
Controlled beta

TestingTesting

Assess
possible impact
Identify team
responsible for
fix

TriagingTriaging

Investigate
surrounding
code and design
Update threat
model
Generate fix for
Test

Creating the Creating the
fixfix

Calls to Action
Response Planning

Plan for production security issues before
the application is released

Include the application security response
within the overall security response
process

Feed lessons learned back into process

Summary

Security Training

Security Kickoff
& Register with

SWI

Security
Design
Best

Practices

Security Arch &
Attack Surface
Review

Use Security
Development

Tools &
Security Best
Dev & Test
Practices

Create
Security

Docs
and Tools

For Product

Prepare
Security

Response
Plan

Security
Push

Pen
Testing

Final
Security
Review

Security
Servicing &
Response
Execution

Feature Lists
Quality Guidelines

Arch Docs
Schedules

Design
Specifications

Testing and Verification

Development
of New Code

Bug Fixes

Code
Signing A
Checkpoint

Express
Signoff

RTM

Product Support
Service Packs/
QFEs Security

Updates

Requirements Design Implementation Verification Release
Support

&
Servicing

Security Deployment Lifecycle
Tasks and Processes

Threat
Modeling

Functional
Specifications

Traditional Microsoft Software Product Development Lifecycle TasTraditional Microsoft Software Product Development Lifecycle Tasks and Processesks and Processes

© 2005 Microsoft Corporation. All rights reserved.
This presentation is for informational purposes only. Microsoft makes no warranties, express or implied, in this summary.

